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Observational knowledge of the epidemic intensity, defined as the
number of deaths divided by global population and epidemic
duration, and of the rate of emergence of infectious disease
outbreaks is necessary to test theory and models and to inform
public health risk assessment by quantifying the probability of
extreme pandemics such as COVID-19. Despite its significance, as-
sembling and analyzing a comprehensive global historical record
spanning a variety of diseases remains an unexplored task. A
global dataset of historical epidemics from 1600 to present is here
compiled and examined using novel statistical methods to esti-
mate the yearly probability of occurrence of extreme epidemics.
Historical observations covering four orders of magnitude of epi-
demic intensity follow a common probability distribution with a
slowly decaying power-law tail (generalized Pareto distribution,
asymptotic exponent = −0.71). The yearly number of epidemics
varies ninefold and shows systematic trends. Yearly occurrence
probabilities of extreme epidemics, Py, vary widely: Py of an event
with the intensity of the “Spanish influenza” (1918 to 1920) varies
between 0.27 and 1.9% from 1600 to present, while its mean re-
currence time today is 400 y (95% CI: 332 to 489 y). The slow decay
of probability with epidemic intensity implies that extreme epi-
demics are relatively likely, a property previously undetected
due to short observational records and stationary analysis meth-
ods. Using recent estimates of the rate of increase in disease emer-
gence from zoonotic reservoirs associated with environmental
change, we estimate that the yearly probability of occurrence of
extreme epidemics can increase up to threefold in the coming
decades.

epidemics | extremes | infectious diseases

Long-term observations and analysis tools to investigate non-
stationary processes are available in several disciplines (1, 2).

However, extensive epidemiological information at the global
scale remains fragmented and virtually unexplored from this
perspective, leading to a lack of analyses attempting to reconcile
observations of a heterogeneous past. The objectives of this work
are to identify the emergent features of the probability distri-
bution of epidemic intensities and to quantify the probability of
occurrence of extreme epidemics by assembling and analyzing a
global historical dataset. This long historical record of infectious
disease epidemics (1600 to present) was assembled from an ex-
tensive literature (3–9) and includes 476 documented infectious
disease epidemics (217 epidemics with known occurrence, du-
ration, and number of deaths, 145 known to have caused less
than 10,000 deaths, and 114 for which only occurrence and du-
ration are known; see ref. 8). Epidemics are defined according to
an independence criterion: 1) Individual epidemics of the same
disease may not overlap in time: an epidemic cannot end in the
same year that marks the start of a subsequent epidemic of the
same disease, irrespective of their occurrence location. Epi-
demics recorded in the literature that occurred in the same pe-
riod of time were merged into a single epidemic (e.g., several
plague events in Europe in the 17th and 18th centuries). This
first independence condition ensures that the analyses only focus
on epidemics associated with a new or reemerging pathogen
after a previous epidemic has ended in the human population
(e.g., due to the reemergence of zoonoses from a natural reservoir).

The composition of the dataset, in terms of the primary reemerging
diseases and of disease types, is summarized in SI Appendix. We
subsequently further selected epidemics to be analyzed by the fol-
lowing additional criteria: 2) epidemics were considered only if they
are not currently active (e.g., AIDS/HIV, malaria, and COVID-19
were excluded), and 3) epidemics that were ended by the intro-
duction of vaccines or effective treatments were excluded. This last
condition, together with the difficulty of determining how some
epidemics were ended at a global scale, led to the exclusion of all
epidemics occurring after the end of World War II in 1945. Con-
ditions two and three ensure that the disease dynamics are gov-
erned by the properties of the pathogen and by transmission
dynamics (susceptible-infected interactions possibly mediated by
vectors), unaffected by treatments or interventions. In summary,
the 1600 to 1945 dataset includes 182 epidemics with known oc-
currence, duration, and number of deaths, 108 known to have
caused less than 10,000 deaths, and 105 for which only occurrence
and duration are recorded, for a total of 395 epidemics.

Results
The Probability Distribution of Epidemic Intensity. The empirical
exceedance frequency distribution of epidemic intensity is well
described by a generalized Pareto distribution (GPD, Fig. 1) over
almost four orders of magnitude of the independent variable.
The GPD notably exhibits a power-law tail, which signals the
absence of a characteristic epidemic intensity and a slowly
decaying probability of intense epidemics (10). The fitted GPD is
characterized by a power-law tail exponent α = −0.71 approxi-
mately for i > 3 × 10−2 ‰/year (Fig. 1), and is robust with re-
spect to the uncertainty characterizing historical accounts of
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Estimates of the probability of occurrence of intense epidemics
based on the long-observed history of infectious diseases re-
main lagging or lacking altogether. Here, we assemble and
analyze a global dataset of large epidemics spanning four
centuries. The rate of occurrence of epidemics varies widely in
time, but the probability distribution of epidemic intensity as-
sumes a constant form with a slowly decaying algebraic tail,
implying that the probability of extreme epidemics decreases
slowly with epidemic intensity. Together with recent estimates
of increasing rates of disease emergence from animal reser-
voirs associated with environmental change, this finding sug-
gests a high probability of observing pandemics similar to
COVID-19 (probability of experiencing it in one’s lifetime cur-
rently about 38%), which may double in coming decades.
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epidemic sizes and durations. The collapse of observed epidemic
intensities onto a single distribution for the wide diversity of
diseases involved and over such a long observational period
supports its general validity over time and irrespective of detailed
disease dynamics or pathogen characteristics. Hence, this prob-
ability distribution of epidemic intensity is assumed here to be
time independent, while the rate of disease emergence is allowed
to vary to reflect observations (SI Appendix, Fig. S1A).

The Probability of Occurrence of Extreme Epidemics. The conven-
tional theory of extremes, as most often applied (11, 12), assumes
the process of event occurrence to be stationary: in this inter-
pretation, epidemic event occurrence is governed by a constant
rate. Furthermore, it assumes the number of events/year to be
“large,” that is, it is asymptotically valid in the limit as the number
of events/year → ∞. Neither of these two “mathematical conve-
niences” is tenable here. The largest number of events in a
single year is 12, the variation of the yearly number of events in the
345 y analyzed is ninefold, and the time series exhibits coherent
temporal patterns (SI Appendix, Fig. S1). Here, we assume the
probability distribution of epidemic intensity to remain the same,
as suggested by the analysis in Fig. 1, but we allow the epidemic
occurrence process to vary over time through the use of the recent
Metastatistical Extreme Value Distribution (MEVD), which re-
laxes the two above limitations (13). The MEVD expresses the
cumulative distribution function of the maximum epidemic in-
tensity occurred within a time interval of 1 y as P1(i) = <P(i)n>,
where brackets represent ensemble averaging, n is the number of
epidemics that occur during a 1-y period (the values of n are
generated by a nonstationary random process according to
observations—SI Appendix, Fig. S1A), and P(i) = 1 − H(i) is the
cumulative probability of epidemic intensity. According to the
MEVD, the function P1(i) is simply computed by approximating
ensemble averaging as a sample mean based on knowledge of P(i)

and of the number of epidemics, ni, that occurred in each year:
P1 i( ) ≅ (1=L) ·∑

i
P i( )ni. In order to determine how P1(i) may vary

over time, the sum is extended over all years in time windows of
fixed length L, sliding with no overlap over the time series (here,
L = 20 y, a compromise between resolving short time scale vari-
ability in epidemic occurrence and robust statistical estimation:
results from values of L in the 10- to 30-y interval are consistent
with those obtained with L = 20 y; SI Appendix).
The exceedance probability of the yearly maximum epidemic

intensity, H1(i) = 1 − P1(i), expresses the likelihood that an ex-
treme novel epidemic (irrespective of the specific disease re-
sponsible for it), with intensity equal to or greater than i, occurs
anywhere in the world in a given year. As an example, we con-
sider an event with an intensity equivalent to that of the 1918 to
1920 “Spanish flu,” whose yearly probability of exceedance,
H1(i = 5.7‰/year), is plotted in Fig. 2A for nonoverlapping 20-y
time periods up to 2019 (for the most recent periods after 1945,
H1(i) is constructed using the general GPD epidemic intensity
distribution, as previously, and the observed number of epidemic
occurrences recorded yearly). The values of H1(5.7 ‰/year)
show remarkable temporally coherent variability, which sharply
contrasts the constant probability that would be obtained from a
conventional approach using a generalized extreme value (GEV)
distribution. This wide variability is due to large variations in the
rate of occurrence of emerging/reemerging infectious diseases
over the course of history and points to the importance of this
factor in defining the likelihood of infectious diseases to come.
The MEVD can be used to infer the yearly probability distri-
bution of epidemic intensity at a specified time, for example, the
present. This probability distribution (Fig. 2B) is necessary to
assess expected global losses of lives and economic damages and
to motivate global coordination and resource mobilization for
public health capacity building (14).
A pandemic of an intensity equal to or greater than that of the

Spanish flu, which resulted in 20 to 100 million deaths [32 million
being an accredited estimate (4)], is considered for illustrating
the use of the average recurrence interval T(i). This pandemic
yielded i = 5.7 ‰/year and is estimated here to have occurred
when its mean recurrence time was T(5.7 ‰/year) = 1/0.011 =
91 y (95% CI is 85 to 101 y). Based on the observed number of
epidemics in our dataset from the most recent 20-y period (2000
to 2019), the mean recurrence time of the same intensity today is
T(5.7 ‰/year) = 1/0.0025 = 400 y (95% CI is 332 to 489 y). A
naive estimate using a stationary GEV assumption yields a lower
and constant T(5.7 ‰/year) = 235 y (SI Appendix, Fig. S5).
In addition to large epidemics, a necessary global health focus

is on building capacity for early responses to infectious disease
outbreaks of smaller proportions (e.g., see the Global Health
Security Agenda, https://ghsagenda.org/). The MEVD statistics
of extreme epidemic intensity does not provide information as to
where an epidemic may emerge; however, it does apply to ex-
treme epidemics of relatively smaller intensities as long as they
are greater than the value of the location parameter. This value,
μ = 0.001 ‰/year, considering the current global population,
now corresponds to an epidemic event with absolute intensity of
about 8,000 deaths/year (e.g., to be compared with the current
absolute intensity of the COVID-19 pandemic of 2.5 million
deaths/year, see Discussion).

Discussion
The empirical distribution of epidemic intensity from about 350 y
of data follows closely a GPD over about four orders of mag-
nitude. This finding supports the hypothesis that the epidemic
dynamics of emerging/reemerging infectious diseases, when not
significantly affected by pharmaceutical interventions, display a
general statistical behavior characterized by an exceedance prob-
ability with a slowly decaying power-law tail. Mechanisms have

Fig. 1. Empirical exceedance frequency of epidemic intensity i (open cir-
cles). Black solid lines show the 95% CI around these empirical frequencies
(29). The red line is the GPD distribution obtained from maximum likelihood
fitting for i ≥ μ = 1.000 × 10−3 ‰/year (μ being the position parameter, scale
parameter σ = 0.0113‰/year, and shape parameter ξ = 1.40). The value P(i ≤
μ) = 0.62 is determined from the number of observed intensities below μ
(244 out of 395, including epidemics—105—for which the number of deaths
is not available, but historical information suggests i ≤ μ). The GPD, for large
values of its argument, becomes a power law with exponent α = −1/ξ
≅ −0.71. The value |α|< 1 denotes a fat-tail behavior in which the probability
of intense events decreases slowly with event intensity. The gray area results
from the overlap of the 10,000 GPD distributions fitted to sample realiza-
tions obtained by applying to each observed intensity a random perturba-
tion uniformly distributed in [−50%, +50%] to account for uncertainties in
historical records.
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been proposed to explain the possible emergence of power-law
epidemic size distributions in short records of single infectious
diseases and in small populations. Such mechanisms are often
based on Susceptible–Infected–Recovered (SIR) dynamics (15),
with formulations that permit parallels with forest fire models (10,
16). However, to our knowledge, the power-law distribution of size
has not been connected to the distribution of epidemic intensities,
which would require accounting for the multivariate probability
distribution of epidemic size and duration. Hence, the possibility
that SIR formulations may explain the power-law features observed
in global epidemic intensities remains currently unexplored.
While the probability distribution of epidemic intensity ex-

hibits general, time-independent features in our multicentennial
dataset, the likelihood of epidemic occurrence is far from con-
stant in time. This is due to the variability in the rate of emer-
gence of infectious diseases and, in our record, to changes in how
epidemics are monitored and reported. These latter differences
potentially affect mostly the initial parts of the historical record,
while estimates of the MEVD probability of extreme epidemic
occurrence in recent times, when disease monitoring has been
more systematic, remains unaffected.
Recent analyses of small-scale infectious disease emergence

events document a significant increase in the yearly rate of emer-
gence in the period 1940 to 2000 (17). Specific mechanisms of
increase in the rate of disease emergence have been identified and
connected to anthropogenic environmental change as one of the
major drivers (18). These effects of anthropogenic environmental
change may carry a high price. Using the MEVD model, we find
that a tripling of the rate of disease emergence, an increase con-
sistent with the recorded recent changes, implies an approximate
tripling of the probability of extreme epidemics, H1(i), with respect
to present values. Such a change would bring, possibly over decadal
time scales, the average recurrence interval of a Spanish flu–like
event down to 127 y (95% CI 115 to 141 y), comparable to the
value it had around 1918 (i.e., 91 y).
Our analysis also quantifies how frequently a COVID-19–like

event may occur in the future. Current information (19) indicates
that the epidemic progresses at a rate of about 2.5 million deaths/
year (3,549,710 in 72 wk), which, normalized by the global pop-
ulation, corresponds to an intensity of the epidemic of 0.33
‰/year. Using the number of epidemic occurrences observed in
the past 20 y (i.e., 2000 to 2019) in the MEVD model, this in-
tensity corresponds to an average recurrence time of 59 y (95% CI
55 to 64 y). This value is much lower than intuitively expected.
However, in many countries, drastic nonpharmaceutical inter-
ventions, contact tracing, and quarantine have significantly re-
duced the number of deaths that could have otherwise occurred.
Detailed modeling work suggests that unconstrained epidemic
spread would have led to as much as eight times the number of
deaths that actually occurred in some countries (20). Assuming

this amplification factor, one obtains an intensity of 2.63 ‰/year,
which corresponds to an average recurrence time of 209 y (95% CI
182 to 244 y). To better appreciate the significance of this value, it
may be useful to compute the probability of experiencing an event
of this intensity in one’s lifetime (here taken, for simplicity, equal
to 100 y), when a constant likelihood is assumed: this probability is

PLife = 1 − (1 − 1 =209)100 = 0.38. Assuming a tripling of the rate

of disease emergence, as suggested by the evidence discussed above,

this probability may increase to PLife = 1 − (1 − 3 =209)100 = 0.76.

These probability values should be a sufficient warning of the
urgency of global preparedness to future pandemic events.

Materials and Methods
A fundamental characteristic of an epidemic is the number of fatalities per
unit time. It is this property that determines how well health care systems
cope with epidemics and the socioeconomic damages that are caused by it.
For this reason, we define and study the epidemic intensity, i = s/[d × S0(t)]
(expressed in ‰ fatalities per year), where s is the total fatalities in an epi-
demic, S0(t) is the size of the global population at the beginning of the
epidemic, and d is the duration of the epidemic. The study of the intensity,
rather than of the total number of deaths in an epidemic, is preferred be-
cause the former is unbounded. Hence, intensity eliminates the need for ad
hoc assumptions near the upper bound of s, S0(t) (e.g., discussed in ref. 12).
To compute S0(t) and epidemic intensity, we used reconstructions of the
global population history (21–25) (see data in ref. 8). Reliable quantitative
information about the total number of deaths is not available for all known
historical epidemics. Such quantitative information becomes more frequent
with the introduction of public records in many parts of the world, starting
in the 17th century. For this reason, we focused on epidemics that occurred
in the period 1600 to 1945, a total of 395 events. Quantitative information
about duration and the number of fatalities was available for 182 of these
epidemics.

The computation of the yearly probability of occurrence of extreme ep-
idemics requires two pieces of information. The first is the probability dis-
tribution of epidemic intensity given that an epidemic has indeed occurred.
We study this distribution based on the 182 observed epidemic intensities in
1600 to 1945. The second piece of information is the probability distribution
of the number of epidemics occurring in a given year. We expect this distri-
bution to vary over time due to varying human–environment interactions and
their decisive effect on the rate of emergence of novel epidemics (17, 26–28).
The varying number of yearly epidemic emergences is analyzed using all 395
known outbreaks in the 1600 to 1945 record (SI Appendix, Fig. S1).

The probability distribution of the maximum size among n epidemics
occurring in a prespecified fixed time interval (w) is considered. When the
sizes of these epidemics are independent within each w-year block and
identically distributed according to the same intensity distribution P(i), then
Pw (i,n) = P(i)n. If P(i) does not change from one w-year block to another,
because n is also a random variable, the probability that the maximum epi-
demic size within a w-year block is smaller than or equal to i can be written as

Fig. 2. (A) Yearly probability of exceedance, H1(i = 5.7 ‰/year), of an epidemic with the same intensity as the Spanish influenza or greater at different times
in history (red). The gray area represents the 95% CI computed from 10,000 realizations obtained by randomly perturbing each historical observation with a
perturbation in the range [−50%, +50%] (gray area in Fig. 1). Note that fitting a standard, stationary GEV distribution yields a constant and misleadingly low
probability of occurrence. (B) Probability of exceedance of maximum yearly epidemic intensity computed on the basis of the number of epidemic occurrences
in the most recent 2000 to 2019 period. Gray area represents the 95% CI as in A.
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Pw (i) = ∑∞
n=0

Pw (i,n) ·g(n) = ∑∞
n=0

P(i)n ·g(n),

where g(n) is the probability distribution of n. The MEVD is defined by
substituting the ensemble average above with its corresponding sample
average (13), thereby avoiding making restrictive parametric assumptions on
the shape of g(n). This substitution results in

Pw i( ) ≅ 1
Nw

∑Nw

j=1
P i( )nj ,

where nj is the number of epidemics that occurred in the j-th w-year block,
and Nw is the total number of w-year blocks in the record. Here, we have
used w = 1 y and Nw = 20 y.

The GPD is a three-parameter function defined through its cumulative
distribution function (11)

P(i) = 1 − (1 + ξ(i − μ)
σ

)−1=ξ,
with location parameter μ, scale parameter σ, and shape parameter ξ. This
expression is only valid for i ≥ μ. Hence, the choice of the location parameter
defines the subset of the data to which the GPD is fitted, and, as a conse-
quence, it should not be defined by optimization or data fitting. For this
reason, no accepted general method is available to estimate the GPD loca-
tion parameter. The location parameter must be viewed as a deliberate
choice of which part of the data the statistical GPD model should be able to
represent. An analysis of the dependence of maximum likelihood–estimated

scale and shape parameters on the choice of μ (SI Appendix, Fig. S6) shows
that their values remain invariant within 0.0005 ‰/year < μ < 0.02 ‰/year.
Estimation uncertainty of the aforementioned two parameters, on the
other hand, grows rapidly with increasing μ as expected because more
and more observations are progressively being censored. We thus adopt
the value μ = 0.001 ‰/year, which, for most of the historical global pop-
ulation values, is near the lower “detection” threshold of 10,000 deaths/
year characterizing the dataset and allows a reduced uncertainty in com-
parison to larger values. p0 = P(i ≤ μ) = 0.62 is the probability that an epi-
demic intensity is less than μ (obtained from the number of events on record
[244 out of 395] with an intensity below this threshold or presumed,
according to historical sources, to be below this threshold). The probability
of exceedance, valid for all values of i and plotted in Fig. 1, is given by

H(i) = 1 − [p0 + (1 − p0) · P(i)] = (1 − p0) · (1 + ξ(i−μ)
σ )−1=ξ. For large values of

the argument, that is, indicatively for (i − μ) > σ/ξ, the exceedance proba-
bility H(i) is approximately a power law with exponent −1/ξ.

Data Availability. The historical epidemics dataset generated in the current
study and a MATLAB code that analyzes it are available in the Zenodo
repository; DOI: https://doi.org/10.5281/zenodo.4626111.
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